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ABSTRACT
Clinical fetal MR imaging of the brain commonly makes use

of fast 2D acquisitions of multiple sets of approximately or-

thogonal 2D slices. We and others have previously proposed

an iterative slice-to-volume registration process to recover

a geometrically consistent 3D image. However, these ap-

proaches depend on a 3D volume reconstruction step during

the slice alignment. This is both computationally expensive

and makes the convergence of the registration process poorly

defined. In this paper our key contribution is a new approach

which considers the collective alignment of all slices directly,

via shared structure in their intersections, rather than to an

estimated 3D volume. We derive an analytical expression for

the gradient of the collective similarity of the slices along

their intersections, with respect to the 3D location and orien-

tation of each 2D slice. We include examples of the approach

applied to simulated data and clinically acquired fetal images.

Index Terms— Image registration, 3D reconstruction,

Magnetic resonanace imaging, Fetal brain, Motion compen-

sation

1. INTRODUCTION

MRI is emerging as a powerful new clinical tool in the early

detection of subtle structural abnormalities in the developing

human fetal brain [1, 2]. It provides improved tissue con-

trast in comparison to ultrasound imaging. This enables the

detection of a range of subtle features not visible on prena-

tal ultrasound, such as gyral and sulcal abnormalities [2–6].

The development of ultrafast 2D acquisition sequences has

led to significant improvements in the clinical utility of fetal

MRI [7, 8]. However, the slice acquisition time is still criti-

cal and has to be as short as possible to reduce the impact of

fetal and maternal motion on the exam, since fetal MRI is of-

ten performed without sedation. As a result, sets of thick 2D

slices are generally acquired in clinical studies, with motion

commonly occurring between slices. Overall, the resulting

image data is limited in its geometric integrity between slices

due to motion, and in its through plane spatial resolution.

In previous work we proposed the first approach to using

image registration to take clinically acquired 2D slice data and

form a single high resolution 3D MR image [9,10] from mul-

tiple orthogonal stacks. Similar approaches were later pro-

posed by [11]. Both of these methods made use of a slice

to volume reconstruction-registration process in order to re-

fine the final image formed by sets of movement perturbed

slice stacks. Critically this approach is limited computation-

ally and algorithmically by the reconstruction step. The initial

reconstruction is blurred by the misalignment of the individ-

ual slices, and a sharpening of the image is not guaranteed by

the slice to volume registration.

In this paper we propose a new approach to the problem

which considers the registration process directly in terms of

the intersections of each pair of slices in the stacks. We de-

rive a gradient based formulation of the improvement of the

alignment of data in the intersection of every slice with every

other slice.

2. METHOD

2.1. Algorithm

The proposed algorithm aligns three stacks of 2D slices,

which are approximately orthogonal to one another. Each

slice is assumed to undergo 3D rigid body motion, thus hav-

ing 6 degrees of freedom.

Two slices drawn from two orthogonal stacks have an in-

tersection, and each slice has its own intensity profile along

this intersection. When the two slices are aligned, the profiles

precisely match against each other. If they are not aligned, the

difference of the profiles can be used to estimate the trans-

lation and rotation of one slice relative to the other when

the gradients of the two images are available. This can be

generalized to the case of multiple stacks. Given nA, nS ,

and nC slices in the axial, sagittal, and coronal stacks, re-

spectively, there are in total N = nA + nS + nC slices,

and the stack set has as many as nAnS + nSnC + nCnA

inter-stack intersections. The three translation and three ro-

tational degrees of freedom of each slice are parametrized by
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Fig. 1. Any two slices from two orthogonal stacks have in-

tersection against each other. When a profile is taken from

each image along this intersection, two profiles from the two

images match precisely if the slices are aligned. The inter-

section is parameterized by λ, and the similarity measure can

be evaluated as a function of λ. In this way, the gradient of

the energy function can be directly calculated by the spatial

gradient of the images.

θ = [x, y, z, rx, ry, rz]�. The global energy function is de-

fined by the sum of dissimilarity measures of all intersection

profiles between two orthogonal slices.

E(Θ) =
N∑

i=1

∑
j∈Si

Dij (1)

where the dissimilarity measure Dij is defined between two

intersecting slices i and j, drawn from two orthogonal stacks,

Dij ≡ Dij(Ii, Ij ; θi, θj) (2)

and Si, Ii, Θ represent the set of slices from the stacks or-

thogonal to the i-th slice, the i-th slice image, and the set of

all the motion parameters of the slices in the stack set, namely,

Θ = [θ�1 · · · θ�N ]�.

In order to minimize the energy function in (1), any opti-

mization scheme can be used, such as Newton based or gra-

dient descent methods.

2.2. Implementation

In this work, the mean of squared difference (MSD) was used

for the dissimilarity measure,

Dij ≡ 1
|Ii

⋂
Ij | × (3)

∫
Ii

T

Ij

||Ii(xij(λ; θi, θj))− Ij(xji(λ; θj , θi))||2dλ,

where the vector xij(λ; Θ) is a position vector in the i-th im-

age, along the intersection between the i-th and j-th images,

one dimensionally parameterized by λ. We define a lexico-

graphical representation of the intensity difference on all the

intersections, D = D(Θ). Using this representation, (1) is

rewritten simply by E(Θ) = ||D(Θ)||2.
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Fig. 2. Covariance of gradients of the global energy function

with respect to translation and rotation motion of individual

slices for the initially misaligned stacks in Fig. 3. A, S and C

represent axial, sagittal and coronal slices, respectively. Grid

lines are added for better reading.

In this experiment, Levenberg-Marquardt method is used,

Θk+1 = Θk − [2(∇ΘD)�∇ΘD + αI]−1∇ΘE, (4)

where ∇ΘE = 2(∇�ΘD)�D. The partial derivative of D
with respect to a specific component θ′ in Θ is an analytical

function:

∂D

∂θ′
=

∑
i,j

(
∂xij

∂θ′

)�
∇xij

D. (5)

The first order approximation of the Hessian matrix is a

covariance matrix that represents the correlation between mo-

tion parameters in terms of the variation in D. Figure 2 shows

one such covariance matrix, where a translational motion of

a slice is either positively or negatively correlated with slices

in its orthogonal stacks. Other intuitive correlations between

slices can be identified, such that all the entries in rotational-Z

vs rotation-Z are negative, which visualizes a bevel gear-like

connection between two slices.

The registration procedure is initialized by first estimat-

ing a global rigid transformation between the axial and the

sagittal, and the axial and coronal stacks [12]. This provides

an approximate starting point of the refinement of individual

slice locations. From the initial estimation, the update (4) is

evaluated. This is repeated according to the current estima-

tion of motion parameters of all the slices, until the decrease
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Fig. 3. Three slice stacks with a resolution of 0.7×0.7×1.5

mm3 with similated motion corruption, displayed row-wisely.

Uniform random motion artifacts of [-3,3] mm of translation

and [-3,3] degrees of rotation are added to each slice.

in the energy after update is less than a predefined tolerance

limit.

3. RESULTS

3.1. Registration of Simulated Misalignment

In order to evaluate the algorithm on representative anatomy

with a known ground truth, as in [9] we used T1W 3D SPGR

images acquired from a premature neonate of a gestational

age of 32 weeks. From this accurate 3D image we extract

slices with random location and orientation to simulate a stack

of 2D images acquired during fetal motion.

Three orthogonal stacks were generated from the axial

stack of the original stack set. The resampling used tri-

linear interpolation in the original voxel dimensions, namely

0.7×0.7×1.5 mm3. Simulated random movement was added

to each of slices, with [-3,3] mm translation and [-3,3] degrees

of rotation. The stacks are shown in Fig. 3.

3.2. Alignment and Reconstruction

The proposed algorithm was implemented, followed by a

Gaussian weighted reconstruction as described in [10]. Uni-

form constrast was assumed in the simulation. The registra-

tion error was measured by the root mean square distance

between individual voxels from the ground truth. Before the

registration, the misaligned stacks had 3.44 mm of RMSE,

and after the registration the RMSE was reduced to 1.52 mm.

Fig. 4. Comparison of the reconstructed simulation volume

(A) before and (B) after the registration.

Fig. 4 depicts the reconstructed volume before the align-

ment (A), and after the alignment (B). Note the separation

between white and gray matter, as well as the sulci structure

are improved in (B).

3.3. Registration of Clinical Fetal Image Data

The same procedure was applied to a clinical single-shot fast

spin-echo (SSFSE) T2-weighted image set acquired during

normal maternal breathing. The sequence parameters were

TR=6000 ms, TE effective=90 ms, in-plane resolution 0.5

mm and 3 mm slice thickness. Figure 5 displays axial, sag-

ital and coronal stacks from top to bottom, and the recon-

structed volumes are presented in Fig. 6. The volume recon-

structed after the slice-wise registration shows sharper edges

and stronger constrast (bottom) than one reconstructed with

only stack-wise registration (top).

4. DISCUSSION

In this paper, we presented an algorithm to align three orthog-

onal stacks of MRI slices, where the slices are individually

translated and rotated. The proposed approach calculates the

correlation of the gradient of mismatch along all the intersec-

tions between any two approximately orthogonal slices with

respect to rotation and translation of each slice, and then up-

dates the location and the orientation of all the slices at once.

The gradient of mismatches is directly calculated from the

knowledge of the spatial gradient of each slice image. Since

the covariance matrix has a relatively small dimensionality,

the inversion can be computed without an approximation.

A benefit of this approach is that any parametric image de-

formations such as illumination or geometrical distortion can

be incorporated in the optimization, which is crucial in 3D

volume reconstruction in fetal brain imaging, where a highly

accurate estimation of motion and illumination is required.
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Fig. 5. Axial, sagital and coronal stack of T2 images acquired

by SSFSE sequences.
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